
A Study of Parallel Software Development with HPF

and MPI for Composite Process Modeling Simulations

D. Shires

HPC Division

Army Research Lab

APG, MD

R. Mohan�

HPC Division

Army Research Lab

APG, MD

A. Mark

HPC Division

Army Research Lab

APG, MD

Abstract

High performance and parallel computers have greatly increased the feasibility of

performing large-scale analysis for engineering applications. However, it does take some

e�ort to e�ectively use these high performance computing (HPC) resources. Appropri-

ate parallel algorithms must be developed, tested, and optimized. The investment in

time and resources required to accomplish this task is most often substantial. There-

fore, developments should take place in a framework that is reasonably portable with

minimal code re-write. In this light, we look at two portable parallel programming

methodologies: High Performance Fortran (HPF) and the Message Passing Interface

(MPI). These are discussed in the context of simulations for composite manufacturing
processes. We describe the mathematical modeling and related implementation ap-

proaches in the two methods, highlight some strengths and weaknesses, and provide

some preliminary comparisons. We also briey present one of the current research

applications in the composites process modeling arena.

1 Introduction

Even as the overall size of the Army has been shrinking, its mission has been continually
expanding. The standing force must evolve to become more lethal, more survivable, and
more mobile. Composite material technology provides an e�ective technique to reduce the
weight of Army systems, thus promoting quick force projection into potentially remote areas.
The use of composite materials has traditionally been considered high-risk, as the process
and mechanics involved in their manufacture was not well understood. Utilization of com-
posites is even more problematic as they are being considered for load-bearing structures.
Often these parts and assemblies can become quite large. Producing large-scale consolidated

�Dr. Mohan is an employee of the University of Minnesota permanently located at the U. S. Army
Research Laboratory.



composite structures without defects represents a new challenge for future combat systems
(FCS) manufacturing.

To assist process engineers, a new process simulation tool: OCTOPUS-COMPOSE (Com-
posite Manufacturing Process Simulation Environment) has been developed. This suite, de-
veloped by the U. S. Army Research Laboratory and the University of Minnesota, provides
an understanding of the resin progression behavior inside complex mold cavities �lled with
heterogeneous, �brous, porous media. Process simulations reduce both the time and cost
associated with manufacturing various new composite weapon systems by giving engineers a
chance to optimize the manufacturing process in a virtual environment. Applications relate
to technology transitions for the improved manufacture and process maturation of composite
structural components in programs such as Comanche, Apache Growth, and the Joint Strike
Fighter.

In many cases, parts under consideration can be e�ectively modeled in the framework
of a sequential simulation on a workstation. However, large-scale problems in aviation and
ground vehicles, with their associated physical and geometrical complexities, require scalable
computational software and high performance computing to provide accurate and feasible
simulations. Process modeling ow impregnation simulations utilizes novel algorithms for
accurate and fast simulations in both uniprocessors and multiprocessors [1].

The advent of the multiprocessor has greatly increased the capabilities of analysis for sci-
enti�c engineering problems such as composite manufacturing. However, good performance
is not guaranteed by adding more CPUs to the problem. The time, e�ort, sophistication, and
involvement during parallel software development, debugging, optimization, and the subse-
quent performance testing depend highly on the parallel programming paradigms employed
in most of the parallel processing systems. As much as possible, it is desirable that the
di�erences in current and future parallel processing systems (processor and memory layout,
tiered and hierarchical memory structures) be as transparent as possible. This requires par-
allel programming paradigms and approaches to be reasonably portable across each of the
parallel platforms without any or minimal code re-write.

Accordingly, compiler research groups and parallel consortiums have been looking at
various ways to facilitate the entire process. Several methods have been proposed and de-
veloped. High Performance Fortran (HPF) supports the philosophy of a high-level parallel
language with parallel constructs along with parallel language compilers. It is general enough
to be practical on numerous systems, from symmetric multiprocessors (SMPs) to massively-
parallel processors (MPPs) to clusters. Finite element computations in composite process
modeling simulations inherently involve data parallelism, which exploits the fact that the
same operation is to be performed on each item in a data set. The increasing level of robust-
ness of HPF compilers support direct portability across multiple platforms with minimum
code re-writes.

Another parallel approach involves explicitly parallel message passing paradigms that
provide a single-program multiple-data (SPMD) programming model with explicit commu-
nication across multiple processors. The computational problem and the �nite element
discretizations employed permit the decomposition of the problem domain into several sub-

2



domains, with each sub-domain assigned to a di�erent processor. Sub-domain computations
are performed concurrently within each processor without a need for communication across
the processors. Inter-processor communications are involved across sub-domain interface
boundaries and when global quantities are computed. These are achieved with explicit mes-
sage passing interface (MPI) calls, which are library calls, thus providing cross-platform
portability.

This paper has several goals. We �rst discuss composite material systems, and current
systems utilizing these material types. We then discuss the need for, and the development
of new approaches that provide e�ective solutions for both serial and parallel computer sys-
tems. We then elaborate on the HPF- and MPI-based solution techniques with appropriate
discussion of the strategies, performance, and e�ectiveness of the solutions.

2 Composites in Army Systems and Future Combat

Systems

Composite materials provide a high strength-to-weight ratio, o�er improved ballistic charac-
teristics, and have the capacity to house embedded structures (sensors, antenna, etc.). These
properties make composites the prime choice for wide use in future combat systems. How-
ever, the transition from metal to composite structures has been slow. Traditional systems
were mostly metal. Today we are seeing hybrid systems with composite structures becoming
more load-bearing. Future systems will see a reversal where new materials will take over the
major percentage of system structure.

Of the various techniques to manufacture composites, liquid composite molding tech-
niques o�er the best opportunity for mass production. These techniques provide for near
net-shape parts and o�er repeatable manufacturing with good �ber layout control. Two
widely used approaches involved resin transfer molding (RTM) and its variants such as the
vacuum-assisted resin transfer molding (VARTM). Both of these techniques use �ber pre-
forms made from stitched material (�berglass, graphite, etc.) and a thermosetting resin that
is injected into a closed or one-sided mold. Once impregnated, the resin then reacts and
cures to form a consolidated composite part.

Several things can go wrong during this process. Fiber wash can occur at areas of
injection, leading to warped �ber tows. Failure to achieve appropriate vacuum in VARTM
may lead to a less than desired �ber fraction. Two prominent and potentially catastrophic
problems are void regions, where resin fails to permeate, and resin cure before complete
injection. The process simulations continue to mature, and it currently is extremely useful
for predicting the later two scenarios. Simulation-based acquisition has enormous potential
in this area. By simulating the manufacturing process before making signi�cant investments
in tooling, costs and redesign (the trial-and-error approach) can be kept to a minimum.

Process simulation capabilities have been and are employed in various aviation com-
posite programs through AVRDEC/Boeing and Lockheed/Sikorsky for programs such as
Comanche, JSF components and Apache Growth rotary wing structural technology demon-

3



strator (RWSTD) project.

3 New Algorithms

It is important for scientists and engineers to be able to obtain accurate solutions to the
physical problems within a reasonable amount of computing time and resources. The total
solution time for composite process modeling simulations depend on the computational algo-
rithms. It is not only enough to have optimal parallel software design, programming models,
data structures and inter-processor communication strategies. It is highly critical to develop
computational algorithms, based on physically accurate representations of mathematical
models that provide the required physical and engineering solutions in an optimal time.
The resin impregnation physical modeling equations and the pure �nite element method
computational technique and its physical accuracy and computational e�ciency used in our
simulations is briey discussed.

3.1 Resin Impregnation and Process Modeling in RTM

The resin impregnation and mold �lling process in RTM involves the ow of a polymeric
resin through a �ber network until the mold is completely �lled. The manufacturing process
simulations are based on macroscopic ow models which are described by Darcy's law [2] that
relates the uid owrate to the pressure gradient, uid viscosity, and the permeability of the
porous medium. Physically, resin impregnation and ow permeating through a porous media
is a free surface moving boundary problem whereby the �eld equations and the free surface
have to be solved and tracked. In mold �lling and resin ow impregnation situations such
as those seen in RTM, the primary interest is in the temporal progression of the resin inside
a complex, �xed-mold cavity. The geometric and material complexities of the structural
components lead to diverging/merging ow fronts and race tracking e�ects. Eulerian �xed-
mesh approaches are e�ective in accounting for these complexities in RTM ow impregnation
process simulations.

3.2 Numerical Approaches for RTM Resin Impregnation Model-

ing

Computational techniques employed in RTM ow simulations for solving the pressure �eld
and the free surface include: 1. An explicit �nite element-control volume method, 2. The
pure �nite element method originally developed by Mohan et al. [1, 3, 4].

3.2.1 Explicit Finite Element-Control Volume Method

The �nite element-control volume method is a common philosophy that has been tradition-
ally employed in most RTM simulations [5{7]. In this technique, the transient mold �lling
problem is treated as a quasi-steady state problem leading to stringent numerical restrictions.

4



The pressure solution is obtained based upon the satisfaction of a quasi-steady continuity

equation given by 5 �
�
�K

�
5 P

�
= 0 based on an incompressible ow �eld and �nite

element discretization of the mold geometry.
A control volume approach is employed to update and track the transient resin front.

In addition to the �nite element discretizing the mold geometry, each �nite element node
is associated with a control volume region centered around the node. The control volume
region associated with a node is bound by element centroids and element mid-sides. The
continually changing ow domain is determined based on the conservation of mass principle
which is applied to each of the control volume regions. The �ll nature of each of the control
volume regions is determined based upon a parameter called the \�ll factor" associated with
each node representing a control volume region. The �ll factor for each node represents the
�ll nature of the control volume region associated with a node. The �ll factor is zero for an
empty control volume region (domain that has not been �lled with the resin). A completely
�lled control volume region has a �ll factor of one. A resin ow front exists in the control
volume regions where the �ll factor is between zero and one.

The mass ux associated with each of the control volume regions is determined based
on the Darcy's velocity �eld obtained from the pressure solution. The time increment for
the advancement of the ow front and each of the quasi-steady states is computed as the
minimum time required to completely �ll at least one control volume region. In this approach,
the transient mold �lling problem is solved for both the pressure �eld and �ll factors in
steps. The mold �lling process is thus regarded as a quasi-steady process even though the
process is fully transient. The solution process assumes steady state conditions at each of
the discrete quasi-steady time increments. The time steps are highly restricted across each
of the quasi-steady steps ensuring the stability of quasi-steady state approximations and
satisfaction of Courant stability conditions. Such restrictions realistically prevent composite
resin impregnation simulations for large-scale structures by increasing the number of quasi-
steady steps during complete impregnation. Accordingly, this solution technique makes such
large-scale simulations very much impossible even on high performance computing platforms.

3.2.2 Pure Finite Element Methodology

A recently developed new approach for the resin impregnation modeling during composite
manufacturing is based on a transient form of mass conservation equation, thus accurately
modeling the transient physical behavior, and is called the pure �nite element methodology.
This technique is briey described next.

The objective of the resin transfer mold �lling analysis is to conserve and determine the
distribution of the resin mass at any instant of time. As discussed earlier, in an Eulerian �xed
mold cavity, the term �ll factor de�nes the distribution and amount of resin mass present
at any time inside the mold cavity. For a constant-density resin based on Darcy's ow �eld,
the modi�ed mass conservation equation for the resin mass at any instant of time inside a

5



general mold cavity forming the Eulerian domain 
 (�gure 1), can be represented as

@

@t

Z



	d
 =

Z



	5 �

 
K

�
5 P

!
d
 (1)

The modi�ed mass balance equation involves the �ll factor(	) denoting the �lled and the
un�lled regions de�ning the resin distribution and the pressure �eld. In the case of non-
isothermal situations involving polymerization curing reactions, the resin viscosity � is a
function of the temperature and the degree of cure. It will vary continually during the mold
�lling.

The resin ow inside a mold cavity (based on Darcy's ow
INJECTION PORTS

FLOW FRONT 
BOUNDARY

FILLED
EMPTY

Ω
δΩ

Figure 1: General partially
�lled mold cavity.

approximation) is a pressure driven ow with the pressure
gradients negligible (5P � 0) in un�lled and partially �lled
regions, 	 = 1 in completely �lled regions, and the variation
in the �ll factor similar to those in the �nite element-control
volume method. The modi�ed form of the mass balance equa-
tion involving the �ll factor and the pressure �eld represents
the governing model equation for the pure �nite element for-
mulations and is given by

@

@t

Z



	d
 =

Z



5 �

�
K

�
5 P

�
d
 (2)

The boundary and initial conditions for the mass balance equation are normal pressure
gradients at the mold wall surface, zero pressure at the resin fronts, and prescribed ow or
pressure at injection ports with �ll factors 	(t � 0) = 1:0:

Finite element discretizations for the pressure �eld and the �ll factor �eld are introduced
and application of Galerkin �nite element methods lead to a discretized system of equations
for the nodal pressure and the �ll factor. These are solved in an iterative manner. The
discretized system of equations is given by

C
�
	n+1 �	n

�
+�t [K]P = �tf (3)

where the discretized matrices are de�ned based on the Galerkin �nite element discretiza-
tions.

The pure �nite element method for mold �lling analysis in RTM has signi�cant physical,
algorithmic, and computational advantages. The method computes the front location with
greater accuracy. Furthermore, the computed location of the ow front at any instant of
time does not depend on the discrete time step size employed to reach that stage [1]. The
pure �nite element methodology briey described here does not involve the restrictions of
the time step increments seen in the explicit �nite element-control volume method but rather
computes the position of the ow front at each of the discrete time steps which are selected
by the analyst. This leads to signi�cant reductions in the time required to complete process

6



simulations. These reductions are quite dramatic in the case of large-scale manufacturing
process applications.

The pure �nite element methodology is proven to provide a physically accurate, compu-
tationally faster, and algorithmically better solution strategy for the �nite element modeling
of the resin impregnation through the porous media. It has also been well demonstrated for
thin, thick and large-scale composite sections [1,3,4,8]. It is to be noted that the computa-
tional advantage demonstrated by the pure �nite element method when compared with the
�nite element-control volume technique for RTM resin impregnation simulations is solely due
to the computational methodology and the algorithmic solution strategy. The e�ectiveness of
this strategy can be seen in any computational platform, from a desktop personal computer
to a high-performance computing system. The pure �nite element computational method-
ology has also made possible large-scale complex resin impregnation simulations within a
reasonable computing time. Such large scale simulations were impossible earlier. [8].

For large-scale process simulations involving high-performance computing systems, the
e�ectiveness and computational advantages of the method is independent of the taxonomy of
the parallel processor topologies (interconnection networks, memory hierarchies, etc.) when
similar data structures, linear system equation solvers, programming paradigms, and com-
munication strategies are employed in the software development. As an illustration, the
normalized computational time (total solution time for the analysis) for complete impreg-
nation of a 10-foot RAH-66 Comanche keel beam con�guration involving 29,171 nodes and
58,187 elements is shown in Table 1. The computational mesh geometry employed in the
simulations and the temporal resin progression contours based on representative injection
locations are shown in �gure 2. Our experiences with large-scale process simulations involv-
ing mesh con�gurations of higher order indicate that the time step increments between each
of the quasi-steady states of the �nite element-control volume methodology are extremely
small, thereby signi�cantly increasing the computational times and precluding the comple-
tion of large-scale process modeling simulations in a realistic time. With the computational
advantage of the pure �nite element method well established [1, 3, 4, 8], the technique forms
the basis of current scalable, parallel software developments.

Figure 2: Process simulations: 10-foot keel beam section

7



Table 1: Comparison of computational times: 10-foot keel
beam section.

Method Computational timea

Explicit FE-CV 31.28
Pure implicit FE (�t = 0:5 sec) 1.00
aRelative to the actual computational time corresponding

�t = 0:5 sec.

4 Parallel FEM with High Performance Fortran

The problem space is constructed through a discretization into �nite elements, in which the
mesh con�guration is built up of nodes (points in three-dimensional space) and elements
(formed by connection of the nodes). The computational data structures involved in the
parallel software implementation consist of both elemental and nodal level structures. How-
ever, a coupled interdependency exists between the nodal and element level computations.
This inherently leads to some level of communication across memories potentially residing in
various processors during parallel �nite element implementations. The level and cost of such
inter-processor communications depend upon the employed programming models, parallel
data structures, and computing architecture.

Although HPF has historically been considered more in the context of grid-based compu-
tation, it can also be used to achieve parallel solutions to problems using unstructured �nite
element implementations as well. Of the various parallel programming models available,
HPF remains general enough to be applicable to various architectures. This highlights the
exibility of the language in an environment that has increasingly seen data parallel comput-
ers replaced by coarse-grain architectures. It also attempts to address parallelism at a high
level, providing a wealth of research potential into compiler construction and methodology
for high performance computing systems. The particular discussions in this paper involve
the inuence of data locality, language de�nition, and compiler maturity for inter-processor
communications in actual numerical simulation codes.

HPF is a language that requires a robust standard and good compilers to achieve its
maximum potential. However, regardless of low-level compiler e�ciency, a signi�cant level
of data locality control exists in the hands of the parallel software developer. Various is-
sues related to inter-processor communication found in �nite element implementations, such
as gather and scatter operations, and the current state-of-the-art of HPF compilers are dis-
cussed. Inter-processor communication (as well as intra-processor communication) is a major
issue, and by appropriately recon�guring the �nite element data, one can achieve improved
data locality. We discuss several topics, including strategies and issues related to improving
the data locality, inuences on the cost and size of communications, and our experiences
based on parallel HPF �nite element implementations. Though the engineering application
employed in our study is based on composite process modeling simulations, the techniques

8



and the strategies apply across several disciplines and in all situations involving unstructured
�nite element computations.

4.1 Data Parallelism

Data parallel approaches provide a direct mathematical based framework for quick, direct
parallel implementations. Data parallelism exploits the fact that often the same operation is
to be performed on each item in a set of data. A data parallel program is a sequence of such
operations. Currently, HPF is the most widely used language to represent data parallelism.
It augments Fortran 90, which provides constructs to represent concurrent execution but not
domain decomposition.

HPF achieves e�cient parallelism through a combination of concurrency and locality of
data reference [9]. While the two are interrelated, it is possible to discuss them separately.
Concurrency assures that all processors are busy, while locality limits the potential amount
of communication found in the concurrent statements. For example, a simple statement such
as A = B * C can proceed concurrently with or without communication required between
the processors, depending upon how the data were distributed.

A limited number of commercial and research HPF compilers is available today. One of
the most popular and robust in support of numerous supercomputer systems is one from the
Portland Group. This compiler is available on numerous Department of Defense HPC assets
and is used in our current implementations.

4.2 Locality

As with any parallel code, a paramount concern involves limiting as much as possible the
amount of communication that must occur between the processors in the parallel pool.
Determining a program's optimal distribution of data objects operated on is a global op-
timization problem, and as such is not generally possible with compiler technology alone.
Accordingly, HPF provides directives for data mapping (i.e., alignment and distribution to
advise the compiler on how to best distribute data elements to the parallel processors. As
would be expected, these directives work best at reducing communication in an environment
comprised of regular, grid-based data. For instance, with a two or three-dimensional grid
of data, it is relatively straightforward for the compiler to distribute data evenly across the
parallel processors. For \ghost points," those items on the data mapping borders which are
shared between processors, it is also feasible for the compiler to vectorize and agglomerate
the data that must be communicated between processors, thus reducing the overall time
spent in communication. E�cient scheduling in these cases is also possible to hide memory
hierarchy latency. However, unstructured �nite element mesh (FEM) con�gurations do not
produce such regular data sets.

Communication is implicit in HPF compared to the explicit calls found in message-passing
codes. While this, in principle, is a factor to make coding in HPF easier than traditional
message-passing languages, it also represents an area that requires special attention if HPF
codes are to perform as well as their message-passing counterparts. Communication in HPF

9



results from the interplay between the program being executed and the data layout resulting
from the distribution directives. An obvious source of communication is found in collective
operations, such as summation reduction. These operations obviously require some cross-
processor communication. Furthermore, with unstructured �nite element meshes, there is
the distinct possibility that the HPF data mapping directives will not keep the data as
processor-local as possible.

4.2.1 Collective Operations

The two most interesting (and used) collective routines in FEM implementations are gather
and scatter. These collective operations are relatively straightforward in HPF. There are
no default library routines in HPF to do gather operations. Rather, the operation can be
achieved through a small bit of code. The HPF code to do a gather operation is comprised
of nested INDEPENDENT do loops. However, there is a SUM SCATTER HPF library function
to perform the required reduction. In this, the full details of the implementation are often
proprietary and architecture speci�c, but most likely this call computes a communication
schedule for data going to and arriving from remote nodes, moves the data, and then com-
putes the reduction. Robust compilers can also perform the reductions locally before sending
out the data.

These communication operations can be very expensive. A pro�le of our code revealed
that it was communication-bound, with well over 50% of the execution time being spent
in calls to the SUM SCATTER library routine. Approximately 20% of the time was spent in
code segments performing gather operations. The library routine SUM SCATTER is called
repeatedly, even for small problems. Since it is a library routine, our assumption was that
each time it was called, a schedule was being computed and executed, and any information
gathered by the scheduling algorithm was being discarded before the next call. While the
details of the communication computation are hidden, it is easy to envision a less than
optimal scheduling algorithm taking at least O(n2) time with n being the number of elements
in a �nite element mesh. Our conversations with the Portland Group con�rmed that the
schedules were being computed repeatedly.

Obviously, the ability to reuse communication schedules is essential to achieving good
performance with codes that repeatedly use scatter and gather operations. Although the
ability to reuse schedules is not speci�ed in the current HPF standard, the Portland Group
has provided a vendor-speci�c patch that will allow communication schedules to be reused, at
least in scatter operations. The schedule can be called repeatedly, hence eliminating the need
to recompute the schedule at each call to SUM SCATTER. The Portland Group reports that
some users have experienced a three-fold code speedup after switching to reusable schedules.
We did note a marked decrease in execution time with reusable schedules. The execution
time for one sample problem fell from 15,534.78 seconds to 6,111.37 seconds, cutting the
time by a factor of 2.5.

Equally problematic are gather operations that generate volumes of code to compute o�-
node data locations. The ability to reuse communication schedules inside of INDEPENDENT
do loops used for gathers is also under investigation. To accomplish this, syntax has been

10



proposed by the Japan Association for HPF (JAHPF) [10]. The process involves using a
INDEX REUSE directive to avoid costly repeated schedule computations. The Portland Group
is planning on incorporating many of the features proposed by the JAHPF. HPF retains most
of its popularity in Europe and Asia. As a result, much of its future is being developed there.
The language de�nition will undoubtedly continue to evolve to address and incorporate these
changes that currently reside in the vendor-speci�c realm.

4.2.2 Mesh Recon�guration

The locality issues previously highlighted rely on the sophistication and the maturity of the
parallelizing compilers. From a parallel �nite element code user perspective, signi�cant im-
provements in data locality, thus limiting interprocessor communication and reducing the
execution time, can be achieved by optimal reordering of the nodal and element mesh con-
�guration data. The node and element numbers are reordered such that there is limited
interprocessor communication between the data after the mapping of the data to the pro-
cessors.

As previously stated, locality of reference greatly impacts the performance of a data
parallel program. HPF provides several directives and distributions to map data and pro-
mote locality. The most common of these are the DISTRIBUTE and ALIGN directives. The
DISTRIBUTE directive indicates how an array is partitioned to the various processors. Ar-
ray alignment, to make sure that corresponding entries are on the same processor, can be
speci�ed using the ALIGN directive. The array dimensions can be distributed as *, BLOCK, or
CYCLIC.

For some applications, such as two-dimensional image processing routines, these distri-
butions map easily and intuitively to the data to promote reference locality. However, for
unstructured �nite element mesh-based data, we usually deal element- and node-based data
sets. Depending upon the quality of the original �nite element mesh, a BLOCK or CYCLIC dis-
tribution of the data will require di�ering amounts of communication. For example, consider
the BLOCK distributions of the nodes and elements arrays in Figure 3. This �gure shows how
the element distribution across processors can require extensive communication depending
upon how the elements reference the nodal-based data.

It should also be noted that rarely will even \good" meshes be optimal in all cases.
Varying the number of processors alone with the same mesh will cause di�ering amounts
of communication. For example, consider a linear triangular �nite element e consisting of
nodes n1, n2, and n3 to form the element e in a computational mesh. Assume that there
are 10,000 elements, 4,000 nodes in the computational mesh, and e = 1, n1 = 1, n2 = 2,
and n3 = 1,900. Further assume that all the data is distributed in block format. If we used
two processors, the �rst 2,000 nodes and 5,000 elements would be local on processor 1. So,
no communication would be required for a computation based on element e requiring any
nodal data. However, if we were to use four processors, node n3 data would now reside on
processor two, rather than on processor one, and would then require some communication.

Accordingly, it is extremely advantageous to have a pre-processing step decomposing
the data in a smart fashion based on the expected number of processors used for �nite ele-

11



.

Figure 3: Original mesh con�guration with high communication requirements.

ment computations employing HPF-based parallel software developments. This technique is
already used in many SPMD message passing-based implementations. In this, the computa-
tional domain is decomposed into a number of partitions equal to the number of processors.
A similar strategy can be employed in HPF parallel software model executions.

First, the original computational mesh is partitioned using an unstructured graph- or
mesh-partitioning software such as Metis [11]. These graph-partitioning tools attempt to
divide the mesh, either according to the nodal or element data, into a number of partitions
while attempting to limit the number of shared nodes between partitions. This gives us
a list of elements for each domain. Second, we compute the domain shared node vectors.
Third, for each domain or partition, we group the nodes that are shared between domains
and renumber them �rst. For example, for partition 0, we renumber all the nodes shared
with partition one, then partition two, etc. This step helps promote data agglomeration
and message vectoring. By placing all of the shared items in a contiguous location, the
compiler will just have to do one send operation. On a shared or distributed-shared memory
platform, this will consist of a memory starting location and vector length. Finally, we
renumber all of the domain-interior nodes. We then proceed to the next domain. This
process, if implemented e�ciently, can be very fast. The renumbering technique employed
is on the order of O(n log n), where n is the number of nodes that are shared between
the various domains. Our implementation is hence bounded only by the speed of the mesh
partitioning software. Figure 4 shows how nodal renumbering in the elements can reduce
the required communications across processor memories. Communications now consist of
nodal-based data shared between the domains and artifacts left over from domain partitions
that cannot exactly match the BLOCK or CYCLIC distribution boundaries.

This very minimal extra pre-processing of the original data has resulted in reduced ex-
ecution times in every case. In some cases, the payo� has been outstanding. Consider the
results displayed in Table 2. This table shows the time for an analysis using a mesh with
29,171 nodes and 58,187 elements on the Cray T3E computer. Note that the time for a 16

12



.

Figure 4: A better mesh con�guration realized by renumbering.

Table 2: Execution times (seconds) of an unstructured �nite element analysis on a Cray
T3E-1200.

Number of processors
Problem 2 4 8 16 32

Airframe Original mesh 20951.89 13117.40 8515.41 6111.37 3603.69
structure Renumbered Mesh 19189.21 9989.31 5553.45 3135.03 2095.47

processor simulation (6,111.37 seconds) was cut to 3,135.03 seconds, or roughly in half. We
are currently assessing the impact of the agglomeration and vectoring steps to see if they are
providing any increased e�ciency realized by the compiler.

In addition to the reduction in execution time, the size of the data communicated and
the number of sends/receives are signi�cantly reduced. Figure 5 shows how this strategy
signi�cantly reduced the total amount of data that had to be communicated between pro-
cessors. It should be noted that the total send and receive requests were also reduced, not
just the total amount sent.

While the aforementioned techniques are very e�ective at reducing communications, they
still do not address the problem of using a computational mesh that cannot be rigidly
broken along domains to �t into the compiler partition sizes. BLOCK distributions result in
symmetric block sizes of size n

p
where n is the cardinality of the data set and p is the number

of processors. This distribution pattern will create ghost point communication because the
mesh partitioning step often produces uneven partitions. One partition's node data may
be slightly misaligned onto another processor. This is another detractor that should be
eliminated to optimize the code, and provide more equitable comparisons with message-
passing implementations.

One possible way to eliminate these communications is through \mesh padding." In this
process, we determine a graph partition and renumber as before. Then, we compute the
block distribution boundaries based on the mesh size and compare how well the graph/�nite

13



.

Figure 5: Total sends/receives (gray{original, black{renumbered) reduced through mesh
renumbering.

element partition maps to these block boundaries. We then create nodes and elements as
needed to make the �nite element mesh �t the partition. Depending upon the initial mesh
con�guration, the number of nodes and elements that have to be created can be quite high.
This approach has several drawbacks. The original mesh intent may be lost with the addition
of new nodes and elements. Furthermore, we are reducing communication at the expense of
added computations.

A better approach has recently been developed. The latest Portland Group HPF compiler
(version 3.0) includes an asymmetrical block distribution and eliminates the need for mesh
padding. This approach allows for \soft" block boundaries that can be set by the software at
runtime and not set by the compiler at compile time. Combined with the mesh renumbering
technique, this should limit all communications except for true domain boundary data. The
syntax is:

!HPF$ DISTRIBUTE A(GEN_BLOCK(DIST)).

Here, A is the array to be distributed and DIST is an array whose cardinality is the number
of processors on which the code will run. Each element of DIST contains the size of the
data block that is to be placed on the processor. Since we have all pertinent data from
the renumbering step, we should be able to provide precise numbers for the DIST array,
thus boosting performance even more. Figure 6 shows the con�guration of this optimal
data-parallel mesh.

Unfortunately, being on the cutting edge has its faults as we were unable to utilize this
new feature. As released, the compiler is unable to generate an executable code that uses
generic block distribution and is compiled with shared memory addressing mode enabled. In
the case of the T3E, shared memory referencing causes the compiler to generate code that
uses very e�cient Cray one-sided get and put communication calls [12].

After disabling shared memory compilation to use generic blocks, the compiler began
to replicate arrays that were used in gather loops. The arrays used in gather loops were
not conformable (not uncommon for element and node arrays), and rather than generate
potentially costly communication runtime library calls, the compiler generated code that

14



.

Figure 6: The optimal mesh con�guration combining renumbering and asymmetric block
sizes.

would replicate one of the arrays to each processor every time the gather was executed.
In contrast, shared memory referencing relaxes the compiler rules and does not cause this
replication. Rather, the compiler generates in-line calls to optimized Cray communications
libraries. Very limited testing was required to determine that the cost of replication would
well exceed any bene�t from generic blocks. We will revisit this issue as the compiler is
updated to support both approaches.

5 Parallel FEM with Message Passing Paradigms

The message passing interface (MPI) is a library-based explicitly-parallel programming
methodology. It consists of code that is instrumented with calls to a runtime library for
interprocessor communication. These routines are callable from the various Fortran imple-
mentations, C, and C++. The library is robust, with over 100 di�erent routines. It is also
simple in many ways, with many large parallel codes only using about 6 di�erent routines
for basic communication.

As it stands, compilers do not optimize for MPI usage. It is entirely up to the developer
to achieve good performance by being creative in MPI usage. Accordingly, MPI is often
known as the \assembly language" of parallel computing. The attention to detail required
is often meticulous.

MPI uses the single program-multiple data (SPMD) approach to achieve parallelism. This
means that a single program image is spawned across many processors, each operating on
(hopefully) local data. SPMD programs are not systolic. In other words, the program counter
can be at di�erent locations in each copy of the running program. Also, the processes can
execute di�erent statements (and in e�ect di�erent programs) by using conditional branches
based on a unique processor identi�cation number.

The mostly local nature of computations involved in the �nite element techniques makes

15



it easily possible to use SPMD type of parallel programming with explicit message pass-
ing paradigms. The �nite element computational domain is decomposed into a number of
sub-domains based on the number of processor partitions involved for problem execution.
Considerable research have been performed over the years for developing e�cient graph par-
titioning techniques and software with the objective of reducing the number of interface
nodes and elements across each of the partitioning domains. It is also possible to distribute
the domain partitions based on the computational loads involved in di�erent parts of the
problem domain. The approach that is employed in this work for parallel software devel-
opment is based on the non-overlapping �nite element domain decomposition. In this the
computational domain is split into a number of sub-domains based on the number of proces-
sors. The �nite element boundaries of any given sub-domain coincide with the sub-domain
boundaries with only the interface nodes being part of the di�erent sub-domains. The �nite
elements that make up each of the sub-domain are completely local to the sub-domains.
Issues relating to parallelism in message passing interface (MPI), compiler capabilities and
programming strategies are briey discussed in subsequent sections. The non-overlapping
�nite element mesh decompositions have been obtained using the graph partitioning software
Metis and/or ParMetis [11] in our parallel software developments.

From �nite element software development perspective, the parallel software developer
is more involved during the development of explicit message passing parallel code. Careful
thought should be given to various aspects including the setting up of the problem, boundary
conditions, equation system solver, thus increasing the di�culty factor during the parallel
software developments. Few of these issues are briey highlighted in a later section.

5.1 Parallelism in MPI

Unlike HPF, which attacks parallel programming from a higher conceptual level, MPI is
known as explicit parallel programming since the software developer must instrument the
code with appropriate communication calls to achieve the desired parallelism. This has both
good and bad connotations. Well written code using few synchronous communications and
blocking calls can be very e�cient. Conversely, the compiler cannot optimize poorly struc-
tured communication since this is done strictly through user calls to library routines. MPI
most closely associates with the Single Program-Multiple Data (SPMD) model of parallel
computing. Each processor has a copy of the program with local storage space for variables.
There are no shared variables amongst the processes. Each process works with unique data,
and all variables and data are communicated by explicit calls to a runtime message passing
library. MPI is probably the most widely used parallel programming method today, and as
such is very portable across platforms [13].

Domain decomposition, the partitioning of data to allow for parallel execution, is done
through directives in HPF codes. MPI provides no such functionality. Instead, the user
must partition data sets in a way to limit communication requirements between the various
sub-domains. This partitioning problem is in no way trivial. The graph partitioning software
such as Metis and ParMetis [11] provide this type of functionality.

16



5.2 Compiler Capabilities and Programming Strategies

Current parallel code developments are within the framework of Fortran 90. Fortran 90
language is newer than the FORTRAN 77 standard and contains several new constructs
and features. The compilers for Fortran 90 have currently been known to produce less
e�cient code than their FORTRAN 77 counterparts. However, Fortran 90 compilers continue
to mature and improve in e�ciency with better back end code generators. Furthermore,
the language contains several features, such as abstract data types, to promote quick code
expansion.

As previously stated, use of explicit message passing requires the software developer to
explicitly communicate data between the processes running on di�erent processors. Domain
decomposition is being normally done \o�-line,", with calls to partitioning algorithms such
as Metis for setting up of the problem data for each of the processors. Hence, pre and
post processing are complicated by the developer having to create code ripe with conditional
branches for initial data distribution and result collection at the end. Also, the use of blocking
receives and barriers should be limited. Furthermore, domain data interchange should not
be based on a �xed schedules. For instance, code should not be written where process 1
waits for data from process 2, then process 3, etc. If process 2 is lagging and is not ready to
send, n communication calls from the other processes will be delayed and unable to complete
while waiting for process 2. In this case, process 1 should be able to receive from any process
ready to send. Use of MPI \wildcards" in communication can be used as much as possible
to preclude these situations and allow for better runtime load balancing [14].

Since each process has its own copy of the code and corresponding stack, care should be
taken to declare potentially large arrays of a size no larger than that needed by the individual
process. However, optimizing for parallel execution falls naturally from serial optimization
since multiple copies of the code will be executing.

5.3 Issues from Finite Element Perspective

Due to the explicit partitioning of the computational domain and with each processor and
sub-domain having its own set of data and executing its own copy of the code, careful
consideration is needed during any parallel �nite element software development. Few of the
issues are briey highlighted next.

The domain decomposition leads to number of interface nodes shared among many sub-
domains. Normally, in �nite element implementations, the external conditions are given
based on nodal or elemental information. For example, the injection conditions in composite
process modeling simulations can be either Dirichlet or Neumann type. If a Neumann type
condition is present at any of the interface nodes, which could be shared by more than one
processor or belong to more than one sub-domain, the software developer must carefully
account for such possibilities, so that external Neumann type loading conditions are not
duplicated at the common interface nodes. On the other hand, a state variable such as �ll
factor in the composite process modeling simulations has the same value for each of the
shared interface nodes, even though they may be shared by di�erent processors. Similar

17



considerations apply for the Dirichlet type boundary conditions. This is one example of
carefulness that is needed during parallel software development employing explicit message
passing paradigms, and adding to the di�culty factor, including the time and e�ort dur-
ing parallel software development. On the other hand, HPF approaches provide a direct
mathematical based framework for quick, direct parallel implementations.

5.3.1 Local and Assembled Matrices and Vectors

In explicit message parallel algorithms, �nite element matrices and vectors are local to each
of the sub-domains and the processor. Each processor performs operations on its own part
of vectors and matrices. In the case of non-overlapping domain decomposition, such as the
one employed in this work, sub-domain boundaries coincide with �nite element boundaries,
i.e, each �nite element belongs to one sub-domain only. Figure 7 illustrates a simple domain
partitioned into four sub-domains. The �nite elements are local to each of the sub-domains.
However, the nodes are shared with neighboring sub-domains and the nodes can be classi�ed
into three di�erent classes as noted in the Figure 7. There are interior nodes I, which
are completely local to the sub-domain, interface(sub-domain boundary) nodes SB and
neighboring sub-domain nodes NB, which have the same geometric location as the interface
nodes SB, but belong to the adjacent sub-domains and processors. The communication
across sub-domains take place as shown by the arrows.

Neighboring Subdomain Node (NB)

Interface (Subdomain Boundary) Node (SB)

Interior Node (I)

Figure 7: A simple domain decomposed into four sub-domains

18



During �nite element computations, both computed sub-domain matrices and vectors
can be either in local or in an assembled form in each of the processors. Each processor is
locally responsible for its own data. An assembled vector contains full entries for both the
interior and boundary nodes. In a �nite element perspective, the assembled form of a vector
contains the assembled contribution from both its local contributions and contributions from
the neighboring sub-domains and processors it shares with. A local vector contains only the
sub-domain contributions. Thus, a local vector contains full values for interior nodes and
only partial values from a sub-domain for interface nodes. The use of the local and assembled
entries makes it easier for the correct computation of the vector-vector inner products during
the iterations of an iterative solver such as the preconditioned conjugate gradient that has
been used in this work and described in the next section.

During the computations in an iterative solver, it is necessary to evaluate the inner
product of two vectors to determine the solution norm. The inner product is required for
the entire computational domain, as the solution norm is based on the entire computational
domain. However, the vectors belong to each of the sub-domains and the contributions
to the global norm from each of the processors have to be added to compute the correct
norm. If the assembled vectors in each of the sub-domains are employed to determine the
sub-domain contribution to the inner product, then the vector components for the interface
nodes are mentioned several times and the result will be incorrect. One solution to produce
the correct result is to divide the inner product component for uivi for the interface nodes by
a `repetition factor' for this node. The 'repetition factor' is the number of times a particular
node appears in all the sub-domains, which is easily obtained from the graph partitioning
phase. The inner product result can also be obtained correctly if one of the vectors is in an
assembled form and the other vector is in local form.

MPI communication calls are used to determine the assembled entries for the sub-domain
boundaries. For any sub-domain, vector entries uSB corresponding to the interface bound-
aries are known. This is then sent to the neighboring sub-domains using SEND MPI commu-
nication calls. At the same time each processor receives the contribution uNB from each of
its neighboring sub-domains. This is achieved through RECEIVE MPI communication calls.
The neighboring contributions are then assembled to the local domain vector to form the
assembled vector û (û = u + uNB). MPI ALLREDUCE communication calls are then used
to determine the global inner product from the sub-domain inner product computations.
Send and Receive operations are shown by arrows in Figure 7. The interface nodal assembly
operations performed are standard computational procedure in �nite element computations.

5.3.2 Linear System Solver

The composite manufacturing process simulations involve the solution of linear system of
equations based on a sparse, symmetric positive de�nite matrix A of the form:

Ax = b

An iterative conjugate gradient algorithm following the developments from K. H. Law [15]
for MIMD computers is employed here. A similar procedure has been followed and extended

19



for a preconditioned conjugate gradient algorithm in [16]. The matrices and vectors refer
to the sub-domain level. As discussed earlier, assembled and distributed vector forms are
employed. Assembled forms are denoted by (̂�). The iterative procedure for the conjugate
gradient iterative algorithm is presented next. The superscript SD refers to the sub-domain
vector and matrix quantities.

� fxSD0 g = 0, frSD0 g = fbSDg

� Do i = 0; 1; : : : : : : until convergence

1. If i = 0 Go To Step 5

2. fuSDg =
�
ASD

�
fpSDg

�SD = fpSDgTfuSDg
�SD = �SD=

3. MPI ALLREDUCE 1

�
= ��SD

4.
�
xSD

	
=
�
xSD

	
+ �

�
pSD

	�
rSD
	
=
�
rSD
	
� �

�
uSD

	
5. SEND frSBg; RECEIVE frNBg�

r̂SD
	
=
�
rSD

	
+ �frNBg

�SD =
�
r̂SD
	T �

rSD
	

6. MPI ALLREDUCE new = ��SD

7. If (i = 0) Go to Step 9

8. If
�
new


< �
�
STOP

9.
�
pSD

	
=
�
r̂SD
	
+ new



�
pSD

	
10.  = new

In the above iterative solution algorithm, A is the system matrix; b is the right hand side;
x is the unknown solution; r is the residual vector;p is a temporary working vectors, � is the
speci�ed error tolerance. Assembled sub-domain vectors are denoted by a hat. For example,
r is a local vector in a sub-domain and r̂ is the same sub-domain vector in the assembled
form. The multiplication of a local matrix by an assembled vector is a local vector. The
transformation from local to assembled vector requires communication of the interface data
between neighboring sub-domains and then to assemble the received data to the local vector.
Each iteration of the conjugate gradient algorithm contains a matrix vector product and
two inner products; one communication operation per iteration between neighbors and two
reduction operations are necessary to obtain the cumulative value of the scalars 1

�
and  from

their sub-domain contributions on all the processors. As before, the matrix vector products
have been computed based on element level matrices avoiding any assembly operation of
the sub-domain matrices. Since sub-domain matrix assembly operations do not involve any

20



communications, it will be interesting to perform comparisons based on assembly of the
sub-domain matrices in a sparse storage format and performing the sub-domain level matrix
vector products. Based on the sparse system, this adds additional storage requirements.

6 Applications and Analysis Results

Process modeling simulations have been applied to various composite structural develop-
ments and are playing a major role in various composite a�ordability initiatives towards
process maturation. Figure 8 shows for illustrative purposes one such application of pro-
cess modeling simulations to a risk reduction version of the Comanche gear box assembly.
The transient resin impregnation behavior modeled by the process modeling simulations
compared and modeled well the actual behavior during the prototype manufacturing. More
importantly, the process modeling simulations will provide the critically needed modeling and
simulation technology when actual full size composite structural components are manufac-
tured. The risk involved in obtaining a good working production methodology for large-scale
full size composite structural components is very high. By appropriately modeling and sim-
ulating the various injection and processing parameters virtually process maturation can be
obtained, thus impacting the composite a�ordability. These process simulations also provide
the necessary framework for a simulation based acquisition strategy for the manufacturing
and acquisition of composite structural components in both defense and civilian applications.

(a) Part section (b) Resin progression contours

Figure 8: Resin impregnation in Comanche gear box assembly

One of our key objectives in this work is the comparison of the parallel software de-

21



velopment process, intricacies and performances between the parallel programming models
thorough high performance fortran (HPF) and message passing passing interface (MPI).
From that perspective, we have presented and discussed earlier our current experiences in
this paper. The parallel software codes for the composite process modeling simulations de-
scribed earlier have been developed, tested and validated using both the data parallel HPF
programming language paradigm and explicit message passing paradigm (MPI) paradigm.
We are currently in the process of generating the comparison data based on the total ex-
ecution time, computational cost, communication cost and di�culty factor for a typical
application program based on controlled simulation runs using the developed codes under
these two paradigms. Preliminary MPI based times have been obtained and are not pre-
sented here. Further optimization, re�nements and studies are currently being conducted on
the present code developments. Recommendations on the use and practicality of these two
paradigm approaches for parallelization e�orts of existing and new codes will be presented
based on our experiences in subsequent publications.

7 Concluding Remarks

The importance of computational algorithms and their role in large scale composite manu-
facturing process simulations was briey highlighted. The objective of the parallel software
and parallel processing systems is not only reducing the time it takes to solve a particu-
lar problem, but also making possible the solution of large-scale problems that were not
previously possible. The e�ectiveness of a recently developed implicit transient pure �nite
element algorithm towards this goal for resin impregnation modeling was briey presented
and demonstrated. Various issues and experiences during parallel software development for
composite manufacturing process simulations employing two common parallel programming
paradigms (High Performance Fortran (HPF) and Message Passing Interface (MPI)) were
described.

These discussions, though presented in the context of composite manufacturing process
simulations, are common and directly applicable to parallel software developments and ap-
plications involving unstructured �nite element meshes. The data parallel paradigm through
high level languages such as HPF and parallel compilers provides a direct mathematical based
framework for direct parallel implementations. Such approaches may be e�ective in certain
applications, where the motivation is to obtain a reasonably performing, parallel, scalable,
portable code in a short cycle time, within the constraints of the availability and maturity
level of the compiler. This is especially true if the parallel software may have limited usage,
from cost and business considerations. The explicit message passing approach, though ex-
pected to yield higher performance levels, have an increased level of di�culty during software
development and require a higher level of sophistication.

22



8 Acknowledgments

This research was made possible by a grant of computer time and resources by the Depart-
ment of Defense High Performance Computing Modernization Program. The authors also
with to thank Douglas Miles of the Portland Group for his assistance in providing immediate
access to the latest (and sometimes developmental) HPF compilers. Dr. Mohan acknowl-
deges the support from University of Minnesota and the Army High Performance Computing
Research Center at University of Minnesota.

References

[1] R. V. Mohan, N. D. Ngo, and K. K. Tamma. On a pure �nite-element-based methodol-
ogy for resin transfer mold �lling simulations. Polymer Engineering and Science, 39(1),
January 1999.

[2] H. Darcy. Les Fontaines Publiques de la Ville de Dijon. Delmont, Paris, 1856.

[3] R. V. Mohan, N. D. Ngo, K. K. Tamma, and K. D. Fickie. On a pure �nite element
based methodology for resin transfer mold �lling simulations. In R. W. Lewis and
P. Durbetaki, editors, Numerical Methods for Thermal Problems, volume IX, pages
1287{1310, Atlanta, GA, July 1995. Pineridge Press.

[4] R. V. Mohan, N. D. Ngo, K. K. Tamma, D. R. Shires, and K. D. Fickie. Process
modeling and implicit tracking of moving fronts for three-dimensional thick compos-
ites manufacturing. In AIAA-96-0725, 34 th Aerospace Sciences Meeting, Reno, NV,
January 1996.

[5] C. A. Fracchia, J. Castro, and C. L. Tucker. A Finite Element/Control volume simula-
tion of Resin Transfer Mold Filling. In Proc. of the American Society For Composites,
4th technical conference, pages 157{166, Lancaster, PA, 1989.

[6] M. V. Bruschke and S. G. Advani. A Finite Element/Control Volume Approach to Mold
Filling in Anisotropic Porous Media. Polymer Composites, 11(6):398{405, 1990.

[7] F. Trouchu, R. Gauvin, and D. M. Gao. Numerical Analysis of the Resin Transfer
Molding Process by the Finite Element Method. Advances in Polymer Technology,
12(4):329{342, 1993.

[8] R. V. Mohan, D. R. Shires, A. Mark, and K. K. Tamma. Advanced Manufacturing of
Large Scale Composite Structures : Process Modeling, Manufacturing Simulations and
Massively Parallel Computing Platforms. Journal of Advances in Engineering Software,
29(3-6):249{264, 1998.

[9] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and
Mary E. Zosel. The High Performance Fortran Handbook. The MIT Press, 1994.

23



[10] Japan Association for High-Performance Fortran. HPF/JA Language Speci�cation, Jan-
uary 1999.

[11] George Karypis and Vipin Kumar. METIS: A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices. University of Minnesota and the Army HPC Research Center, 1997.

[12] Portland Group, 2000. Private Communication.

[13] Peter Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[14] Ted G. Lewis and Hesham El-Rewini. Introduction to Parallel Computing. Prentice
Hall, 1992.

[15] K. H. Law. A parallel �nite element solution method. Computers & Structures, 23(6):845
{ 858, 1985.

[16] R. Kanapady. Parallel implementation of large scale �nite element computations on a
multiprocessor machine: Applications to process modeling and manufacturing of com-
posites. Masters Thesis, 1998. University of Minnesota.

24


